一本精品99久久精品66,国产精品免费大片一区二区,欧美性爱第一网,亚洲成AV人一区二区电影,日本老妇人乱XXY,国产精品页

產(chǎn)品分類
文章詳情

基于近紅外光譜的陳化大米定性鑒別和摻假分析方法

日期:2024-11-16 06:48
瀏覽次數(shù):107
摘要:大米是我國主要的糧食作物之一。隨著社會經(jīng)濟的發(fā)展,大米的質(zhì)量問題逐漸引起了人們的關(guān)注。其中,大米的陳化和摻假是一個突出的問題。傳統(tǒng)的大米鑒別方法主要依賴于人工經(jīng)驗和化學分析技術(shù),普遍存在分析周期長、操作復(fù)雜、成本高等問題。因此,需繼續(xù)探索更加準確、快速、穩(wěn)定的大米鑒別方法。

大米是我國主要的糧食作物之一。隨著社會經(jīng)濟的發(fā)展,大米的質(zhì)量問題逐漸引起了人們的關(guān)注。其中,大米的陳化和摻假是一個突出的問題。傳統(tǒng)的大米鑒別方法主要依賴于人工經(jīng)驗和化學分析技術(shù),普遍存在分析周期長、操作復(fù)雜、成本高等問題。因此,需繼續(xù)探索更加準確、快速、穩(wěn)定的大米鑒別方法。

圖片1.png 

與傳統(tǒng)分析技術(shù)相比,近紅外光譜分析技術(shù)具有諸多優(yōu)點,它能在幾分鐘內(nèi),僅通過對被測樣品完成一次近紅外光譜的采集測量,即可完成其多項性能指標的測定(*多可達十余項指標)。光譜測量時不需要對分析樣品進行前處理;分析過程中不消耗其它材料或破壞樣品;分析重現(xiàn)性好、成本低。

 

因此,在建立大米檢測模型時,可以基于近紅外光譜數(shù)據(jù)的基礎(chǔ)上采用北方蒼鷹優(yōu)化算法(Northern Goshawk Optimization,NGO)以及對核極限學習機(Kernel Extreme Learning Machine,KELM)的兩個重要參數(shù)進行尋優(yōu)并建立模型。

材料與方法

1、材料

實驗樣品為2017年和2022年水稻成熟后,于黑龍江省建三江市七星農(nóng)場采用五點式隨機采樣法獲取的五優(yōu)稻4號,將其脫粒碾磨至精白米后作為研究樣品。其中新大米樣品為2022年收獲大米,摻假大米樣品為將2017年收獲的大米按照不同比例(25%、50%、75%)摻入2022年收獲的大米中,陳化大米樣品為2017年收獲大米。采用高精度電子秤取(5±0.02)g作為一份樣品,共計新大米30份樣品、摻假大米90份樣品、陳化大米30份樣品。

 

2、儀器與設(shè)備

 

TANGO近紅外光譜儀,德國布魯克(北京)科技有限公司。

  

3、實驗方法

3.1光譜預(yù)處理

對原始光譜數(shù)據(jù)進行標準正態(tài)變量變換(Standard Normal Variate,SNV)預(yù)處理,用于消除顆粒不均等原因產(chǎn)生的噪聲信息,原理為樣品光譜數(shù)據(jù)各波數(shù)點的吸光度符合一定分布,計算時將每個樣品的原始光譜減去理想光譜,再除以標準差。SNV公式

 

3.2 基于NGO-KELM的陳化大米定性鑒別方法

分別建立KELM分類模型和NGO優(yōu)化后的KELM分類模型。將新鮮大米30份、摻假大米90份以及陳化大米30份共計150份樣本數(shù)據(jù)隨機按照7∶3的比例分為訓練集(105份)和測試集(45份)。采用訓練集和測試集的預(yù)測準確度和F1值作為模型的性能評價指標,并繪制混淆矩陣。


3.3基于NGO-KELM的陳化大米摻假定量分析方法

基于上文定性分析,分別建立KELM回歸模型與NGO優(yōu)化后的KELM回歸模型,對摻假樣品進行摻假量的定性分析,探討KELM模型和NGOKELM模型對新鮮大米中摻雜陳化大米量的預(yù)測能力。將新鮮大米30份(摻假量0%)、摻假大米90份(摻假量25%、50%、75%)、陳化大米30份(摻假量100%)共計150份樣本按照7∶3的比例隨機分為訓練集(105份)和測試集(45份)。對于定量預(yù)測模型采用決定系數(shù)R2和RMSE作為性能評價指標,并繪制柱狀圖來反映預(yù)測結(jié)果。

 

結(jié)果與分析

 

1、定性實驗結(jié)果分析

分別建立KELM模型和NGO-KELM模型,對比二者準確度和F1值并繪制混淆矩陣從而確定模型的性能,實驗結(jié)果見表1。NGO-KELM模型的訓練集和測試集準確度與F1值均高于未優(yōu)化的KELM模型(NGO-KELM測試集的混淆矩陣見圖1),其測試集準確度提高約5%,說明NGO能有效提高KELM模型的分類準確度。

 

圖1 NGO-KELM模型在測試集上的混淆矩陣表1 各模型結(jié)果對比 

2、定量實驗結(jié)果分析

分別建立KELM模型和NGO-KELM模型進行實驗發(fā)現(xiàn),利用NGO優(yōu)化的KELM模型的定量預(yù)測表現(xiàn)也有顯著的提升,結(jié)果見圖2。

 

圖片6.png

圖2 各模型定量預(yù)測結(jié)果對比

NGO-KELM模型測試集決定系數(shù)R2和RMSE分別提升了0.0541和0.0233,得到了較理想的摻假率檢測精度,見表2,該方法顯著優(yōu)于傳統(tǒng)方法。

表2 各模型定量預(yù)測結(jié)果

圖片8.png 

3、結(jié)論

基于NGO-KELM實現(xiàn)了陳化大米的定性鑒別和摻假定量分析。通過近紅外光譜設(shè)備采集標準樣品的信息,并采用NGO優(yōu)化算法對KELM模型進行了優(yōu)化。建立的模型具有較高的準確度和穩(wěn)定性,可以有效鑒別陳化大米,同時能對其摻假進行定量分析,為陳化大米的定性鑒別和摻假定量分析提供了一種新的分析方法。

 


粵公網(wǎng)安備 44010302000429號